TOPOLOGY (MATH 54) Take-Home Midterm Exam

NAME:

Instructions: This is an individual exam. You may use your class notes, handouts posted on the course website, and James Munkres' *Topology*, but no other sources (animate or inanimate) should be used without first consulting your instructor.

This exam consists of **3 problems** with a total of 6 parts. You may handwrite or typeset your solutions but they are due by **10am on Friday**, **July 15**, **2016**. Your solutions may be slid under my office door (Kemeny 219) or submitted electronically.

1. (10pts) Let $X = (-\infty, 0) \cup \{0', 0''\}$. Define a collection

 $\mathscr{B} = \{(a,b) \mid a < b < 0\} \cup \{(a,0) \cup \{0'\} \mid a < 0\} \cup \{(a,0) \cup \{0''\} \mid a < 0\}.$

Prove:

- (a) \mathscr{B} is a basis for a topology on X.
- (b) $(X, \mathscr{T}_{\mathscr{B}})$ is not Hausdorff.
- 2. (15pts) Let (X, \mathscr{T}) be a topological space and $A, B \subset X$. Prove:
 - (a) $\overline{A \cap B} \subset \overline{A} \cap \overline{B}$.
 - (b) In general, $\overline{A} \cap \overline{B}$ is not a subset of $\overline{A \cap B}$. (Find a counterexample.)
 - (c) $\overline{A \cup B} = \overline{A} \cup \overline{B}$.
- 3. (15pts) Let X be a topological space. Prove:

X is Hausdorff $\iff D = \{(x, x) \mid x \in X\}$ is closed in $X \times X$.